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1.  The defaults on Microsoft Excel are awful.
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Good examples from our previous papers

with folded/unfolded ratios of 0.56 and 0.42 respectively. The
smaller benzene shelf of balance 3 is too small to form
arene-arene interactions with the phenyl arm and thus had a
significantly lower folded/unfolded ratio of 0.11.

The inability of balance 3 to form an arene-arene
interaction in the folded conformer makes it useful as a
control system. The strong bias in balance3 for the unfolded
conformer is a measure of the repulsive interaction between
the phenylether oxygen and the arene shelf. This interaction
is present in all of the balances. Thus the folded/unfolded
ratios for balance 3 can be used as the zero point value for
this balance system.16 The corrected values of ∆G values
for the arene-arene interactions in 1 and 2, in CDCl3 were
-1.01 and -0.84 kcal/mol, respectively (298 K) (Figure 4).
These values are consistent with the range of values
previously reported for similar arene-arene interactions.4,8

This conformation bias makes the measurement of the
arene-arene interaction more accurate because it keeps the
unfolded/folded ratio closer to unity where the NMR integra-
tions are more accurate.

Finally, the excellent solubility of the balances enabled
examination of solvent effects on the arene-arene interac-
tions (Figure 5). Consistent with previous studies, we have
observed that more polar solvents drive systems 1-3 to
greater degrees of folding. The energy of the observed
interactions has a linear correlation with the ET(30) value of
the solvent.17 In order to rule out possibility that the solvent
trends were due to differences in dipole moments between
the folded and unfolded conformers, MOPAC semi empirical
calculations were carried out on balance 2. The difference
in dipole moments were 0.4 D with the unfolded conformer
being more polar. This is opposite to the observed trend in
which the folded conformer were more favored in polar
solvents. Interestingly, the trend lines in Figure 5 were all
parallel as the differences in energy between the balances
was relatively constant over the range of solvent systems
that were examined. One explanation is that variations in
the ∆G are due to the differences in solvation energy of the
unfolded conformers. This is consistent with the phenylether
arm in the unfolded conformer being the most solvent

accessible surface and also being a conserved structure in
all three balances. The differences in ∆G between balances
are then due to the arene-arene energies of the folded
conformers in different solvents. The arene surfaces in the
folded conformer are more solvent shielded and thus have
very similar solvation energies in different solvents.18

In conclusion, a series of molecular balance was prepared
based on a rigid bicyclic N-aryl succinimide that can adopt
distinct folded and unfolded conformations. We have ob-
served in the solid-state that the folded conformer displays
an offset face-to-face arene-arene interaction while no
intramolecular interaction is possible in the unfolded con-
formation. The balance can be assembled by an efficient
modular synthesis that allowed for the interconversion of a
number of arene shelves. Excellent solubility allowed for
quantification of the folded/unfolded ratio in a wide variety
of organic solvents. Future studies will focus on the
substituent effects on the face-to-face arene-arene interaction
via variation of the phenylether arm and also will examine
the thermodynamics of the arene-arene interactions in
different solvents.
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Figure 4. Folded/unfolded ratios (b) and ∆G (9) for balance
systems 1-3 relative to balance 3 measured by 1H NMR at 23 °C
in CDCl3. Figure 5. Measured ∆G for balances 1 ([), 2 (9), and 3 (2) in a

variety of solvents plotted versus the ET(30) value for each solvent.
Solvents from left to right are benzene, THF, chloroform, acetone,
DMSO, and acetonitrile at 23 °C.
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decreased. (Figure 6) We were interested whether the lattice
model simulation could replicate this trend and whether it
could assist in establishing its origins.

We repeated Spivak and Kim’s experiment utilizing the
lattice model simulation. The monomer and cross-linking
agent concentrations and the K* term were held constant ([M]
) 7.81%, [CL] ) 31.25%, and K* ) 33.3). Again, these
values were chosen to mirror the experimental conditions.
The concentrations of template were varied from 0 to 100%.
The percent template was defined by Spivak and Kim as
[T]/([CL] + [M]). The different types of binding sites in
each sMIP were tabulated (Figure 7). The results mirror those
trends observed by Spivak. The population of high-affinity
binding sites in the sMIPs (types 2, 3, 4) initially increases
with increasing template concentration. After reaching a
maximum, the population then decreases with the increase
of the template concentration. (Figure 7b,c)

The simulation also gave insight into the origins of these
trends. Spivak hypothesized that the observed trends were
due to the statistical preferences, and the simulation analyses
appear to confirm this explanation. At low template concen-
trations, the monomer units out number the template units,
which facilitates the formation of higher order complexes
with 4:1, 3:1, and 2:1 monomer-template stoichiometries.
Due to La Chatelier’s principle, increasing the template
concentration initially increases the population of these higher
order complexes. However, increasing the template concen-
tration beyond a certain point leads to a decrease in the higher
order complexes because the template units start to out
number the monomer units. Under these conditions, the lower
order 1:1 monomer-template complexes become statistically
favored. This is evident in the simulation by the dramatic
increase in the number of low-affinity (type 1) binding sites
beyond template concentrations of 10% (Figure 7a). The
preferential formation of 1:1 complexes at higher template
concentrations leads to a decrease in the population of high-
affinity binding sites due to mass balance. The point at which
this transition occurs differs depending upon the binding
constant. When the microscopic binding constant K* was
varied, the concentration of template that yielded the highest
population of high-affinity binding sites also shifted. Spivak
and Kim observed the same trends with different template
molecules. Each template had a different binding affinity (and
also stoichiometry) for the monomer and thus the optimal
template concentration varied accordingly. These studies

demonstrate again that there is a competition between the
formation of low-affinity and high-affinity binding sites for
the monomer units. If the population of one type of binding
sites increases then there must be an accompanying decrease
in the population of other types of binding sites.

We were interested in whether polymers formed with
higher affinity monomers would have similar trends to those
formed using the traditional lower affinity monomers. This
is of particular interest as functional monomers with increas-
ingly higher association constants have recently been devel-
oped and applied to the molecular imprinting process.48

However, experimental studies on the optimal formulations
for these higher affinity polymers have not been reported.
Thus, the effect of template concentration on the binding
capacities of three sMIPs (K* ) 10, 100, and 1000) were
examined. The simulated polymers utilized the same imprint-
ing conditions as the previous studied sMIP (K* ) 33.3),
and the number of high-affinity binding sites (NHBS) in these
sMIPs was calculated at various template concentrations
(Figure 8). In this study, the high-affinity binding sites were
defined as the type 2, 3, and 4 binding sites. Similar trends
were observed for all three polymers, mirroring those in the
previous study. At low template concentrations (<10%), an
increase in template concentration led to the formation of
more high-affinity binding sites. This trend reaches a
maximum at a template concentration of between 10% and
30% and then drops. However, clear differences were seen
in the slope of this maximum for the three polymers. In the
low-affinity sMIP (K* ) 10), the maximum is very low and
broad. This suggests that the binding capacity is not that
sensitive to variations in the template concentration. How-
ever, the high-affinity sMIP (K* ) 1000) showed a very
sharp maximum. This suggests that there is a very narrow
range of optimal monomer-template ratios for these high-
K* MIPs. Thus, the optimization of the template concentra-
tions in these high-K* MIPs should be carried out very
carefully as very small variations in the template concentra-
tion will lead to large changes in binding capacities of the
corresponding MIPs.

4. Simulation of Selectivity Trends in MIPs. The above
simulations examined the binding capacities, affinities, and
heterogeneous distributions of MIPs. However, the most
important binding property of MIPs is their selectivities and
in particular enantioselectivities.8,9 Imprinted polymers pre-
pared using chiral templates have been shown to be highly
enantioselective. Furthermore, the enantioselectivity can be
rationally tailored by use of a particular enantiomer as the
templating agent. We were interested whether the lattice
model simulation could be extended to study the selectivity
in MIPs.

For the selectivity simulations, a template that has only
two binding faces was used (Figure 9). There are various
“isomeric” forms of a two-sided template. We chose
“isomers” that have one binding face in common and labeled
them left and right isomers. This would be analogous to the
situation with enantiomeric templates that present the same
number and geometric arrangements of binding functional-

(48) Wulff, G.; Knorr, K. Bioseparation 2001, 10, 257–276.

Figure 6. Number of binding sites (N) versus varied percent template for
measured in experimental MIPs by Spivak and Kim [data was adapted from
ref 42].
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To deconvolute similar and overlapping patterns as well as to
filter out random noise, multivariate analysis was applied. This
reduced the eight dimensional data set into a more manageable two
dimensional data set which still contained as much of the
distinguishing signals of the original data set as possible.7

Specifically, linear discriminant (LDA) was used to transform the
data set into a more visually manageable two dimensional plot (Fig
3). LDA was chosen over the more common principal component
analysis (PCA) as it produced greater differentiation and less
overlap between groups. Each axis of the LDA plot contains linear
combinations of the original eight-dimensional data set weighted
by coefficients that produce the greatest differentiation between the
different analytes. Each point in the LDA plot, therefore, represents
the response of the entire eight-channel MIP sensor array for a
single analyte.

This analysis demonstrates that the MIP sensor array is
generating unique binding patterns for all six analytes. The

replicate data points for each analysis are clustered together and
equally importantly, these groupings are separate from one another.
This initial data can be treated as a training set and the
corresponding LDA plot as the calibration matrix. An unknown
would be tested against the MIP sensor array and the eight-channel
data processed using the previously derived LDA coefficients or
loadings. This data point is then plotted on the LDA plot and its
identity is selected based on proximity to the previously measured
analytes.

To assess the accuracy of MIP sensor array and of the LDA
analysis the existing data set was treated as if one of the
measurements was an unknown. This data was excluded from
training set and a new LDA plot generated. The excluded analyte
was then replotted on the abbreviated LDA plot and classified.
Using this ‘jack-knife’ analysis, the MIP array was able to correctly
classify 34 out of 36 measured samples, which is an accuracy rate
of 94%.

This work demonstrates the potential of template based synthesis
methods such as molecularly imprinted polymers to rapidly prepare
recognition elements for the sensor array format. Using a molecular
imprinting strategy also has the advantage that the individual
recognition elements can be rationally designed to have the
requisite differential selectivity and can be specifically tailored to
the specific analytes being measured. A limitation of this study is
that it requires the analytes to have a spectroscopic handle
(absorbance at 258 nm).8 We are in the process of removing this
limitation by using dye displacement from the array to measure
binding. This allows the MIP array to assay analytes lacking a
chromophore and gives a common spectroscopic signal for all
analytes. The progress on this work will be reported in due
course.

We thank Dr Chris Mubarak for his time and expertise within the
analytical field, as well as Dr Richard Brereton for his multivariate
excel add-in. Funding was provided by the National Institutes of
Health (GM62593).
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Fig. 2 Plot of the response of the six analytes (3 mM solutions in CH3CN)
tested in replicate (5 times) against the eight-channel MIP array.

Fig. 3 Two-dimensional LDA plot of the six analytes tested against the MIP
array.
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association constant (K). The calculation of binding param-

eters from an isotherm requires the application of a spe-

cific binding model. Among those that have been applied

to MIPs are the Langmuir, bi-Langmuir, Freundlich, Toth,

and Langmuir–Freundlich isotherms [8,12,18,19]. Each of

these models specifies a certain mathematical relationship

between the bound (B) and free (F) concentrations in the

binding isotherm. In addition, each model makes certain as-

sumptions regarding the distribution of binding sites.

Selection of a binding model is primarily based on its

ability to accurately reproduce the experimental isotherm.

The physical basis for the model should also reflect the dis-

tribution of sites found in the measured system in order to

generate realistic binding parameters. Due to the complexi-

ties in calculating the distribution of sites in heterogeneous

systems, various simplifications and approximations meth-

ods are utilized. The most common is to assume that the

distribution of sites conforms to a certain general shape. A

few of the more common that have been applied to MIPs

are shown in Fig. 4. Each can approximate the actual distri-

bution with increasing degrees of accuracy.

Binding models can be grouped into two general classes:

discrete and continuous distribution models. The most

commonly applied binding models, the Langmuir and

bi-Langmuir isotherms, are both examples of discrete bind-

ing models. Discrete binding models simplify a distribution

into a finite number of different classes of sites, with each

class of site having a different binding affinity. The Lang-

muir model assumes there is only a single class of sites, and

the bi-Langmuir assumes there are only two classes of sites.

The Freundlich and Langmuir–Freundlich are both exam-

ples of continuous distribution models in which a continu-

ous function containing an infinite number of different types

of binding sites is used to model the distribution. These

models provide increasingly more accurate approximations

Fig. 4. Discrete (a and b) and continuous (c and d) binding models

distributions, shown as bars and solid lines, respectively, which are overlaid

on the broad heterogeneous distribution that is proposed for MIPs (broken

lines). (a) Langmuir (narrow unimodal); (b) bi-Langmuir (bimodal); (c)

Freundlich (exponential); (d) Langmuir–Freundlich (broad unimodal).

for the heterogeneity present in most MIPs and also pro-

vide quantitative measures of heterogeneity. Both classes of

binding models with examined separately in the following

sections.

3.1. Discrete binding models

The discrete Langmuir and bi-Langmuir models are at-

tractive because they are particularly easy to implement via

Scatchard plots and readily generate the corresponding bind-

ing parameters: binding affinity (K) and number of bind-

ing sites (N). In the Scatchard analysis, the experimental

binding isotherm is replotted in B/F versus B format. In

homogeneous systems that contain only one type of bind-

ing site, the Scatchard plot falls on straight line (Eq. (1))

with a slope equal to the negative of the binding affinity

(−K) and an x-intercept equal to the number of binding

sites (N):

B

F
= KN− KB (1)

In contrast, the Scatchard plots for most MIPs are curved

(Fig. 5). This curvature has been cited as evidence for

binding site heterogeneity [14]. Heterogeneity can still be

accommodated using the Scatchard analysis by modeling

the curved isotherm as two separate straight lines, which is

a graphical method for applying the bi-Langmuir isotherm.

This limiting slopes method yields two separate sets of

binding parameters (K1, N1 and K2, N2) for two classes of

sites. The steeper line measures the high-affinity sites and

the flatter line measures the low-affinity sites.

The graphical application of the bi-Langmuir model us-

ing the limiting slopes method is inconsistent as it depends

upon individual decisions of which points to include in

which subset. The bi-Langmuir isotherm can also be ap-

plied in a more systematic manner using curve fitting using

the following expression (Eq. (2)). Higher order fits tri- and

tetra-Langmuir models can, likewise be applied by adding

Fig. 5. Scatchard plot for an ethyl adenine-9-acetate imprinted polymer,

with the limiting slopes estimated via regression.
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General reasons behind formatting choices

1. Remove all formatting that is not necessary like color, shadows, 
legends, and grays (which don’t print well).

2. Graphs will be very small in the publication (usually one column 
which is 3.2 inches).  Therefore, everything should be very large and 
readable like font sizes, font types, and line widths. 

3. Ideally, there is enough information on the graph to understand it 
without looking at the caption.  So there should be axes units and 
series labels directly on the plot.
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Results of changes
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Saving and reapplying formatting changes

• Once you have made all these formatting changes you can save them 
under:

Chart/ Chart Type/Custom Types/User Defined/Add

7

Saved formating preferences can be 
reapplied to other graphs simply 
by changing the Chart Type to you 
User Defined types.

Incorporation of Graphs into Word

• Try not to resize graphs in Word or PowerPoint.  

This can alter all the formatting changes that you have made.  Reopen 
the graph in Excel and resize it there.  (Note: this means that you 
typically would like the graphs to be 3.1 inches in width in Excel.)
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• Paste the Excel graph into the Word document using:

 Paste Special/Microsoft Excel Chart Object.  

This will ensure that I can edit the Excel file on my Mac.  Alternatively, you 
can send me the graph as an .XLS Excel file.  (Please do not use the 
new .XLSX format.) 


